Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
New Phytol ; 238(5): 2130-2143, 2023 06.
Artigo em Inglês | MEDLINE | ID: mdl-36810975

RESUMO

Phytomyxea are intracellular biotrophic parasites infecting plants and stramenopiles, including the agriculturally impactful Plasmodiophora brassicae and the brown seaweed pathogen Maullinia ectocarpii. They belong to the clade Rhizaria, where phagotrophy is the main mode of nutrition. Phagocytosis is a complex trait of eukaryotes, well documented for free-living unicellular eukaryotes and specific cellular types of animals. Data on phagocytosis in intracellular, biotrophic parasites are scant. Phagocytosis, where parts of the host cell are consumed at once, is seemingly at odds with intracellular biotrophy. Here we provide evidence that phagotrophy is part of the nutritional strategy of Phytomyxea, using morphological and genetic data (including a novel transcriptome of M. ectocarpii). We document intracellular phagocytosis in P. brassicae and M. ectocarpii by transmission electron microscopy and fluorescent in situ hybridization. Our investigations confirm molecular signatures of phagocytosis in Phytomyxea and hint at a small specialized subset of genes used for intracellular phagocytosis. Microscopic evidence confirms the existence of intracellular phagocytosis, which in Phytomyxea targets primarily host organelles. Phagocytosis seems to coexist with the manipulation of host physiology typical of biotrophic interactions. Our findings resolve long debated questions on the feeding behaviour of Phytomyxea, suggesting an unrecognized role for phagocytosis in biotrophic interactions.


Assuntos
Parasitos , Rhizaria , Animais , Parasitos/genética , Rhizaria/genética , Hibridização in Situ Fluorescente , Fagocitose
2.
BMC Plant Biol ; 19(1): 288, 2019 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-31262271

RESUMO

BACKGROUND: Clubroot disease caused by Plasmodiophora brassicae (Phytomyxea, Rhizaria) is one of the economically most important diseases of Brassica crops. The formation of hypertrophied roots accompanied by altered metabolism and hormone homeostasis is typical for infected plants. Not all roots of infected plants show the same phenotypic changes. While some roots remain uninfected, others develop galls of diverse size. The aim of this study was to analyse and compare the intra-plant heterogeneity of P. brassicae root galls and symptomless roots of the same host plants (Brassica oleracea var. gongylodes) collected from a commercial field in Austria using transcriptome analyses. RESULTS: Transcriptomes were markedly different between symptomless roots and gall tissue. Symptomless roots showed transcriptomic traits previously described for resistant plants. Genes involved in host cell wall synthesis and reinforcement were up-regulated in symptomless roots indicating elevated tolerance against P. brassicae. By contrast, genes involved in cell wall degradation and modification processes like expansion were up-regulated in root galls. Hormone metabolism differed between symptomless roots and galls. Brassinosteroid-synthesis was down-regulated in root galls, whereas jasmonic acid synthesis was down-regulated in symptomless roots. Cytokinin metabolism and signalling were up-regulated in symptomless roots with the exception of one CKX6 homolog, which was strongly down-regulated. Salicylic acid (SA) mediated defence response was up-regulated in symptomless roots, compared with root gall tissue. This is probably caused by a secreted benzoic acid/salicylic acid methyl transferase from the pathogen (PbBSMT), which was one of the highest expressed pathogen genes in gall tissue. The PbBSMT derived Methyl-SA potentially leads to increased pathogen tolerance in uninfected roots. CONCLUSIONS: Infected and uninfected roots of clubroot infected plants showed transcriptomic differences similar to those previously described between clubroot resistant and susceptible hosts. The here described intra-plant heterogeneity suggests, that for a better understanding of clubroot disease targeted, spatial analyses of clubroot infected plants will be vital in understanding this economically important disease.


Assuntos
Brassica/genética , Doenças das Plantas/microbiologia , Plasmodioforídeos/fisiologia , Transcriptoma , Brassica/microbiologia , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Raízes de Plantas/microbiologia
3.
Mol Plant Microbe Interact ; 31(12): 1227-1229, 2018 12.
Artigo em Inglês | MEDLINE | ID: mdl-29969057

RESUMO

The Plasmodiophorida (Phytomyxea, Rhizaria) are a group of protists that infect plants. Of this group, Spongospora subterranea causes major problems for the potato industry by causing powdery scab and root galling of potatoes and as vector for the Potato mop-top virus (PMTV) (genus Pomovirus, family Virgaviridae). A single tuber isolate (SSUBK13) of this uncultivable protist was used to generate DNA for Illumina sequencing. The data were assembled to a draft genome of 28.08 Mb consisting of 2,340 contigs and an L50 of 280. A total of 10,778 genes were predicted and 93% of the BUSCO genes were detected. The presented genome assembly is only the second genome of a plasmodiophorid. The data will accelerate functional genomics to study poorly understood interaction of plasmodiophorids and their hosts.


Assuntos
Genoma de Protozoário/genética , Doenças das Plantas/parasitologia , Plasmodioforídeos/genética , Solanum tuberosum/parasitologia
4.
J Eukaryot Microbiol ; 2018 Jan 16.
Artigo em Inglês | MEDLINE | ID: mdl-29336517

RESUMO

Class Ascetosporea (Rhizaria; Endomyxa) comprises many parasites of invertebrates. Within this group, recent group-specific environmental DNA (eDNA) studies have contributed to the establishment of the new order Mikrocytida, a new phylogeny and characterization of Paramyxida, and illuminated the diversity and distribution of haplosporidians. Here, we use general and lineage-specific PCR primers to investigate the phylogenetic "gap" between haplosporidians and their closest known free-living relatives, the testate amoeba Gromia and reticulate amoeba Filoreta. Within this gap are Paradinium spp. parasites of copepods, which we show to be highly diverse and widely distributed in planktonic and benthic samples. We reveal a robustly supported radiation of parasites, ENDO-3, comprised of Paradinium and three further clades (ENDO-3a, ENDO-3b and SPP). A further environmental group, ENDO-2, perhaps comprising several clades, branches between this radiation and the free-living amoebae. Early diverging haplosporidians were also amplified, often associated with bivalves or deep-sea samples. The general primer approach amplified an overlapping set of novel lineages within ENDO-3 and Haplosporida, whereas the group-specific primer strategy, targeted to amplify from the earliest known divergent haplosporidians to Gromia, generated greater sequence diversity across part of this phylogenetic range.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...